Water drinking

From SYNCOpedia
Revision as of 12:00, 15 October 2015 by Jelledejong (talk | contribs) (Created page with "''Roland D. Thijs, Robert H.A. Reijntjes, J. Gert van Dijk''<br/> ''Department of Neurology and Clinical Neurophysiology, Leiden, The Netherlands''<br><br/> {{case_present| =...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Roland D. Thijs, Robert H.A. Reijntjes, J. Gert van Dijk
Department of Neurology and Clinical Neurophysiology, Leiden, The Netherlands


Background

Exercise-related syncope without organic heart disease has frequently been reported in young athletes [2, 5, 9–11, 14]. The exact incidence of idiopathic exercise-related syncope among young athletes is not known. Calkins et al. and Colivicchi et al. found that after a thorough cardiac evaluation athletes with an exertional-related syncope could safely continue to participate in athletics [2, 3]. Tilt-table testing may be a useful diagnostic tool provoking syncope in 41 % of 24 athletes and up to 79 % after isoproterenol infusion [5]. Idiopathic exercise-related syncope has been reported to result from hypotension together with a normal HR, tachycardia, bradycardia or asystole [2, 9]. The pathophysiology of this condition is poorly understood [9]. Atenolol, hydrofludrocortisone, disopyramide, transdermal scopolamine and increased salt intake have been recommended as treatment for exercise-related syncope [2, 5, 10, 11, 13]. To our knowledge this is the first report of a beneficial effect of water drinking for this condition.

Case

A 20-year-old male pupil of a sporting school had had attacks of lightheadedness over several months. The first time he felt unsteady and fell to the ground when he dismounted his bicycle after 1-hour of moderate exercise. In addition, he had chest pain and was short of breath. He was not certain whether or not he had passed out. Nobody had witnessed the event. For two hours afterwards he complained of unclear vision as if “looking through salad oil”. He had not been incontinent, had sustained no bruises and no tongue bite. Later, similar attacks occurred during light cycling, after competition skating, after skiing and during miction after exercise. He has a medical history of asthma and migraine. Both a cardiologist and a pulmonologist had analyzed the presenting complaints previously but could not find an explanation. Previous examinations had consisted of an ECG, echocardiography, bicycle stress testing, laboratory screen, chest X-ray and a lung perfusion scintigraphy. His medications were formoterol inhalations 12 mcg bid, budesonide inhalations 200 mcg bid and pantazol 20 mg od. The patient did not use coffee, nicotine or drugs. On physical examination no abnormalities were noted. The patient’s supine blood pressure (BP) was 110/65 mmHg with a resting heart rate (HR) of 70 beats per minute (bpm). Neurological examination showed slightly impaired fine motor skills and frequent eye blinks either left or right sided.

Test results

A magnetic resonance imaging study of the brain was normal. Test of HR and BP during rest (70 bpm; 108/65 mmHg), deep breathing, standing up (85 bpm; 121/91 mmHg),a Valsalva maneuver and sustained hand grip were all normal. A tilt-table test (without medication) showed no abnormalities. Cathecholamine concentrations in plasma were obtained by venapuncture in both supine and after 30 minutes upright position (norepinephrine(NE): 1.22 nmol/l vs. 3.67 nmol/l, epinephrine(E): 0.13 vs. 0.16 nmol/l, dopamine(DA): 0.04 vs. 0.07 nmol/l, respectively) and in 24-hour urine (NE: 0.43 µmol, E: 0.06 µmol, DA: 2.46 µmol). In view of the relation to exercise, the patient was asked to mimic a typical bicycle tour on an ergometer, while EEG, ECG and BP (Finapres, finger photoplethysmography) were continuously monitored. Cycling at maximal effort increased HR up to 185 bpm (mean ± standard deviation: 176 ± 7 bpm) without significant BP changes (systolic BP (SBP) 119 ±14mmHg; diastolic BP (DBP) 72 ±9 mmHg). Immediately after cessation of exercise BP fell to 75/45 mmHg, during which the patient felt unsteady and complained of blurred vision; there was no loss of consciousness. During the BP drop, electrocardiography revealed sinus tachycardia of 180 bpm. The patient recognized the sensations as similar to those of spontaneous attacks.

Treatment

A second exercise test was performed two weeks later, 15 minutes after rapid consumption of 1000 mL water. Symptoms did not recur at the second test. Compared to the first cycling test the maximal rise of HR during exercise was reduced to 155 bpm and the BP raised during exercise (SBP 149 ± 21 mmHg; DBP 94 ± 14 mmHg). No significant BP drop occurred after cycling. Fig. 1 displays the changes of heart rate and blood pressure during both tests. Furthermore exercise-related symptoms were succesfully prevented by water ingestion. However, after 2 months our patient complained of attacks during ordinary daily activity. As these attacks could not be anticipated and occurred frequently, we advised to stop the extra water ingestion and precribed sodium tablets (7.2 g/day) instead. After 2 months he had had no complaints.

References

  1. Bjørnstad H, Storstein L, Meen HD, and Hals O. Electrocardiographic findings in athletic students and sedentary controls. Cardiology. 1991;79(4):290-305. DOI:10.1159/000174893 | PubMed ID:1782647 | HubMed [Bjornstad]
  2. Calkins H, Seifert M, and Morady F. Clinical presentation and long-term follow-up of athletes with exercise-induced vasodepressor syncope. Am Heart J. 1995 Jun;129(6):1159-64. DOI:10.1016/0002-8703(95)90398-4 | PubMed ID:7754948 | HubMed [Calkins]
  3. Colivicchi F, Ammirati F, Biffi A, Verdile L, Pelliccia A, and Santini M. Exercise-related syncope in young competitive athletes without evidence of structural heart disease. Clinical presentation and long-term outcome. Eur Heart J. 2002 Jul;23(14):1125-30. DOI:10.1053/euhj.2001.3042 | PubMed ID:12090751 | HubMed [Colivicchi]
  4. Fleg JL and Lakatta EG. Prevalence and significance of postexercise hypotension in apparently healthy subjects. Am J Cardiol. 1986 Jun 1;57(15):1380-4. DOI:10.1016/0002-9149(86)90222-5 | PubMed ID:3717041 | HubMed [Fleg]
  5. Grubb BP, Temesy-Armos P, Hahn H, and Elliott L. Utility of upright tilt-table testing in the evaluation and management of syncope of unknown origin. Am J Med. 1991 Jan;90(1):6-10. DOI:10.1016/0002-9343(91)90499-n | PubMed ID:1670907 | HubMed [Grub]
  6. Holtzhausen LM and Noakes TD. The prevalence and significance of post-exercise (postural) hypotension in ultramarathon runners. Med Sci Sports Exerc. 1995 Dec;27(12):1595-601. PubMed ID:8614313 | HubMed [Holtzhausen]
  7. Jacob G, Costa F, Shannon JR, Robertson RM, Wathen M, Stein M, Biaggioni I, Ertl A, Black B, and Robertson D. The neuropathic postural tachycardia syndrome. N Engl J Med. 2000 Oct 5;343(14):1008-14. DOI:10.1056/NEJM200010053431404 | PubMed ID:11018167 | HubMed [Jacob]
  8. Jordan J, Shannon JR, Black BK, Ali Y, Farley M, Costa F, Diedrich A, Robertson RM, Biaggioni I, and Robertson D. The pressor response to water drinking in humans : a sympathetic reflex?. Circulation. 2000 Feb 8;101(5):504-9. DOI:10.1161/01.cir.101.5.504 | PubMed ID:10662747 | HubMed [Jordan]
  9. Kosinski D, Grubb BP, Karas BJ, and Frederick S. Exercise-induced neurocardiogenic syncope: clinical data, pathophysiological aspects, and potential role of tilt table testing. Europace. 2000 Jan;2(1):77-82. DOI:10.1053/eupc.1999.0065 | PubMed ID:11225599 | HubMed [Kosinski2000]
  10. Kosinski D, Grubb BP, Kip K, and Hahn H. Exercise-induced neurocardiogenic syncope. Am Heart J. 1996 Aug;132(2 Pt 1):451-2. DOI:10.1016/s0002-8703(96)90446-9 | PubMed ID:8701911 | HubMed [Kosinski1996]
  11. Sakaguchi S, Shultz JJ, Remole SC, Adler SW, Lurie KG, and Benditt DG. Syncope associated with exercise, a manifestation of neurally mediated syncope. Am J Cardiol. 1995 Mar 1;75(7):476-81. DOI:10.1016/s0002-9149(99)80584-0 | PubMed ID:7863992 | HubMed [Sakaguchi]
  12. Shannon JR, Diedrich A, Biaggioni I, Tank J, Robertson RM, Robertson D, and Jordan J. Water drinking as a treatment for orthostatic syndromes. Am J Med. 2002 Apr 1;112(5):355-60. DOI:10.1016/s0002-9343(02)01025-2 | PubMed ID:11904109 | HubMed [Shannon]
  13. Sneddon JF, Scalia G, Ward DE, McKenna WJ, Camm AJ, and Frenneaux MP. Exercise induced vasodepressor syncope. Br Heart J. 1994 Jun;71(6):554-7. DOI:10.1136/hrt.71.6.554 | PubMed ID:8043337 | HubMed [Sneddon]
  14. Takase B, Kastushika S, Hamabe A, Uehata A, Isojima K, Satomura K, Nishioka T, Ohsuzu F, and Kurita A. Significance of circulatory epinephrine levels in exercise-induced neurally mediated syncope. Clin Cardiol. 2001 Jan;24(1):15-20. DOI:10.1002/clc.4960241306 | PubMed ID:11195600 | HubMed [Takase]
  15. Wolthuis RA, Froelicher VF Jr, Fischer J, and Triebwasser JH. The response of healthy men to treadmill exercise. Circulation. 1977 Jan;55(1):153-7. DOI:10.1161/01.cir.55.1.153 | PubMed ID:830206 | HubMed [Wolthuis]

All Medline abstracts: PubMed | HubMed